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Abstract—Three-dimensional (3D) imaging technology has
been growingly prevalent in today’s world. But objective quality
assessment of 3D images is a challenging task. In this paper,
we propose a blind metric to predict the perceptual quality of
stereopairs within the concept of free energy. On the basis of
a psychological measure, the free energy is a principle telling
where supervises more and attracts human attention. We believe
that the “surprise” can account for the binocular rivalry and
thus be used to predict the quality of stereopairs. We first
evaluate the quality of the monoscopic image, then introduce the
computation process of binocular rivalry’s results for deciding
the relative importance of the left and right views, and finally
infer the overall quality score. Our algorithm is tested on the
symmetric LIVE3D-I and asymmetric LIVE3D-II databases.
Experimental results confirm that the proposed blind 3D IQA
technique, without distortion identification, is able to faithfully
predict the visual quality of stereopairs.

Keywords—Image quality assessment (IQA), binocular rivalry,
free energy, stereoscopic, no-reference (NR), asymmetric.

I. INTRODUCTION

Three-dimensional (3D) media services, which are becom-
ing increasingly popular in today’s world, are, to some extent,
altering the way in which we entertain, communicate, and
store information. The prevalence can be partly demonstrated
by the number of 3D silver screens worldwide from 2006
to 2014. The number of screens in 2014, which is 22.3%
higher than that of 2013 and is 251.6 times as much as
that of 2006, reaches 64905. Apart from 3D movies, there
is a glut of non-cinematic 3D content that is making its
way to consumers, especially over wireless networks such as
3D on mobile devices, 3D TVs, 3D displays, 3D broadcast
and some emerging wearable equipment [1]. However, the
wireless transmission mode and the spotty displays imply the
presence of types of distortions, which will be received by
consumers and degrade the viewing experience. So we need
systems to monitor, control and improve the visual quality of
stereoscopic presentations. Image quality assessment (IQA),
due to its capability of simulating human visual perception to
image quality, is usually used to solve this problem.

Numerous approaches for 2D IQA have been proposed
over the last several decades. In the current research of IQA,
image quality metrics are usually classified into full-reference
(FR) [2], [3], reduced-reference (RR) [4], [5], no-reference
(NR) [6], [7] methods depending on the accessibility to the
original reference points [8]. Some of them perform quite
well in predicting the subject ratings on popular image quality
databases [9], [10], [11].

Following the research of monoscopic image quality met-
rics, more and more objective 3D metrics have been devel-
oped. Compared with 3D subjective assessment methods, they
are time-saving, convenient, and more practical for real-time
image processing systems. We can classify the existing 3D
IQA approaches into three categories: 1) [12], [13], [14],
etc evaluate stereoscopic images using 2D IQA metrics; 2)
[15], [16], etc measure stereoscopic images considering 3D
perceptual properties; 3) [17], [18], [19], etc are NR/blind
IQA approaches for stereoscopic images. In addition, several
databases of 3D image sets as important tools in the research of
3D IQA have been proposed, such as LIVE 3D IQA Database
including the Phase I dataset [1] and Phase II dataset [20],
which make us convenient to analyze the performance of a
variety of 3D quality metrics.

The additional dimension of 3D content brings about many
important issues. First, the binocular rivalry may influence the
perceived 3D quality [21]. Further, the depth sensation asso-
ciated with depth quality, 2D quality, etc has a certain effect
[22]. What’s more, the incorrect stereography will degrade the
experience of viewing a 3D image [23]. In this paper, we try to
predict 3D perceptual quality by focusing on the two factors
of all: the binocular rivalry and the quality of 2D binocular
images. We propose a blind 3D IQA algorithm on the basis
of 2D IQA NFERM [7] and resort to free-energy principle
[24] to emulate the result of binocular rivalry. It is worth
mentioning that Zhai et al. first apply the brain theory into IQA
research in [4] and introduce a new approach based on free-
energy principle. Some brain theories have been unified within
the free-energy framework. In [24] Frison indicates that the
uncertainty will be removed by human to infer the meaningful
part from visual stimuli during the inference process of human
brain. It is natural that there exists a gap between the real
scene and the brain’s prediction due to the fact that the internal
generative model cannot be universal. It is the gap that makes
human “surprise”, and thus attracts attention. In other words,
when images presented to two eyes are different, the image
causing more surprise draws more attention. And we believe
that the surprise can account for the binocular rivalry. In our
algorithm, we use free-energy theory to predict the responses
of human brain. On the basis of the responses, we generate
the error map and compute the surprise. Finally we use spatial
pooling strategy and get the blind 3D IQA algorithm.

The rest of this paper is organized as follows. Section II
first presents the proposed IQA metric. In Section III, the
effectiveness of our algorithm is proved by comparison of its
experimental results with those obtained by existing relevant
models. Finally, concluding remarks are given in Section IV.
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II. BLIND 3D IMAGE QUALITY ASSESSMENT VIA FREE
ENERGY PRINCIPLE

Given an image signal I , the free-energy principle [24]
suggests that the cognitive process is governed by an internal
generative model G in the brain. Given different scenes or
images, the model G will adapt itself through varying a
parameter vector θ [4]. Then the “surprise” caused by image I
can be computed by integrating the joint distribution P (I, θ|G)
over the space of model parameter θ

− logP (I|G) = − log

∫
P (I, θ|G)dθ. (1)

We can use an auxiliary posterior distribution Q(θ|I,G) to
calculate the surprise of I in (1). Referring to [4], we can drop
the latent model assumption G in our analysis for simplicity,
since the behavior of the model can be characterized by
parameter θ. By letting the auxiliary term into (1) and using
Jensen’s inequality we have

− logP (I) ≤ −
∫
Q(θ|I) log

P (I, θ)

Q(θ|I)
dθ. (2)

The right hand side of (2) is defined as the free energy:

F (I, θ) = −
∫
Q(θ|I) log

P (I, θ)

Q(θ|I)
dθ. (3)

By noticing that P (I, θ) = P (θ|I)P (I), we can write (3) into

F (I, θ) =

∫
Q(θ|I) log

Q(θ|I)

P (θ|I)P (I)
dθ

= − logP (I) +

∫
Q(θ|I) log

Q(θ|I)

P (θ|I)
dθ

= EQ[− logP (I|θ)] +KL (Q(θ|I)‖P (θ)) . (4)

Here the term KL (Q(θ|I)‖P (θ)) measures the distance be-
tween the recognition densities and the true prior of the
model parameters. The term EQ[− logP (I|θ)] is the averaged
entropy of predicting I .

We hope to compute the surprise. For operational amenabil-
ity we can hypothesize the generative model G to be a
2D linear autoregressive (AR) model for its high description
capability for natural images. The AR model is defined as

xn = χk(xn)α + εn (5)

where xn is the nth pixel, χk(xn) is a row-vector that consists
of k nearest neighbors of xn, α = (α1, α2, α3, ..., αk)T is
the vector of AR coefficients and the εn is the error term.
Under the large sample condition, the free energy equals the
total description length of image I . So we estimate the AR
coefficients by minimizing the description length

α̂ = arg min
α

(− logP (I|α) +
k

2
logN) (6)

where N is the data sample size. We fix the order and the
training set size of the model and thus turn the comparison
process into residual minimization

α̂ = arg min
α
||x−Xα||2 (7)

where x = (x1, x2, ..., xN )T and X(n, :) = χk(xn). And the
parameter can be solved as α̂ = (XTX)−1XTx. In this case,
the parameter θ of the model can be well described by α̂.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Error map construction: (a) is of good quality, (d) is spoiled
by white noise. (b) and (e) show the predicted images. (c) and (f)
show the final computed error maps after scaling.
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Fig. 2: Computed ratios of surprise: On Phase II dataset, the left-
view images are of good quality or slightly spoiled, the right-view
images are almost heavily spoiled. X-axis represents the number
of images, y-axis represents the ratio of R(E) between stereopairs,
two colors of bar respectively represent left view and right view. (a)
- (e) are statistical results of asymmetric stereopairs with different
kinds of distortions. (f) is the result of symmetric stereopairs.

Next, we use the input image I in a point-wise manner to
estimate the predicted version Ip via χk(xn) · α̂. The point-
wise error εn can then be pooled to get the error map E(I)
and entropy of the errors can also be computed as R(E) =∑
−P (ε) logP (ε) with P (ε) being the probability distribution

of the errors.

By above analysis, the linear AR model is used to approxi-
mate the generative model, thereby to predict an image that the
HVS perceives from the outside stimulus. Then we compute
the R(E) from the predicted image which contributes to the
surprise in human brain. We choose two images for analysis,
one is the reference image from 3D LIVE database and the
other is the spoiled version with white noise. Fig. 1.(a)-(f) show
the predicted images and the scaled error maps. We intuitively
deduce that the R(E) of the image spoiled by white noise is
larger because its error map seems wide-ranging. Experimental
results prove our deduction, Fig. 2 gives the statistical results
on Phase II dataset. The figure shows that when an asymmetric
stereopair is spoiled by white noise, the worse image will
cause more surprise. However other listed kinds of distortion
lead to opposite results. Besides, the ratios of symmetrically
distorted and asymmetrically white-noise stereopairs almost go
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TABLE I: Comparison of 2D IQA Models: Pearson linear correlation
coefficient (PLCC) against DMOS on the Phase I dataset. Italics
indicates an NR (blind) algorithm.

Algorithm Type JP2K JPEG WN BLUR FF All
PSNR FR 0.788 0.208 0.926 0.916 0.711 0.835

SSIM [2] FR 0.875 0.489 0.928 0.917 0.726 0.877
BRISQUE [6] NR 0.850 0.655 0.941 0.926 0.716 0.887
NFERM [7] NR 0.896 0.669 0.903 0.924 0.811 0.893
Our model NR 0.892 0.735 0.911 0.926 0.799 0.905

TABLE II: Comparison of 3D IQA Models: Pearson linear correla-
tion coefficient (PLCC) against DMOS on the Phase I dataset.

Algorithm Type JP2K JPEG WN BLUR FF All
Benoit [12] FR 0.940 0.641 0.925 0.949 0.747 0.903

Hewage [15] RR 0.904 0.531 0.896 0.798 0.670 0.830
You [16] FR 0.878 0.487 0.941 0.920 0.730 0.881

Gorley [26] FR 0.485 0.312 0.796 0.853 0.365 0.451
Akhter [17] NR 0.906 0.729 0.905 0.618 0.660 0.427
Our model NR 0.892 0.735 0.911 0.926 0.799 0.905

halves, which implies the method by averaging the quality of
stereopair predicted by 2D IQA algorithms can perform well
on the two parts as shown in Table I-V.

Motivated by the fact that the receptive fields of the human
visual cortex are localized in space [25] we further partition the
distorted image into M×N patches. We calculate local entropy
of error map on each block first. Then we apply them to our
pooling strategy based on the idea that the spatial location that
draws more attention deserves greater weight.

R
′

= Σi max [
ξσi

Σi σi
,

R(Ei)

Σi R(Ei)
] ·R(Ei). (8)

In (8) σi is the standard deviation of ith block and R(Ei) is
entropy of local error map. There is a roughly linear relation
between terms σi

Σi σi
and R(Ei)

Σi R(Ei)
according to observation

of experimental results and we use parameter ξ and the max
operator to improve the accuracy. We compute R

′
by three

steps of partitioning distorted image, local computation to
obtain R(Ei) and σi, spatial pooling to obtain R

′
. We use

terms wl = R
′

l/(R
′

l+R
′

r) and wr = R
′

r/(R
′

l+R
′

r) as weights
assigned for the left view and right view and thus compute the
overall quality score by s = wlsl + wrsr.

We refer to the NFERM [7] as the 2D IQA algorithm in our
model for the unification of free-energy principle and extract
23 features as NFERM does. Those features can be classified
into three groups taking account of structural information,
properties of HVS, and “naturalness” of images respectively.
The obtained coefficients for 2D model are from training on
the LIVE database and are not changed through the whole
process. To save space we don’t give detailed illustration here.
Using two weights to linearly combine the two NFERM scores
of the left and right views, we can derive the final prediction of
our blind 3D IQA technique. The diagram of proposed model
is shown in Fig. 3.

III. EXPERIMENTS AND ANALYSIS

We use LIVE 3D Image Quality Database to validate the
effectiveness of our method. This database was constructed in
two phases. Phase I contains symmetrically distorted stimuli
while Phase II has both symmetrically and asymmetrically
distorted stimuli. Both phases used five types of distortions:
compression using the JPEG and JPEG2000 compression

TABLE III: Comparison of 2D IQA Models: Pearson linear cor-
relation coefficient (PLCC) against DMOS on the Phase II dataset.
Italics indicates an NR (blind) algorithm.

Algorithm Type JP2K JPEG WN BLUR FF All
PSNR FR 0.501 0.378 0.855 0.727 0.439 0.471

SSIM [2] FR 0.725 0.670 0.926 0.842 0.865 0.802
BRISQUE [6] NR 0.588 0.662 0.927 0.517 0.789 0.617
NFERM [7] NR 0.685 0.504 0.740 0.923 0.832 0.724
Our model NR 0.799 0.874 0.928 0.973 0.891 0.875

TABLE IV: Comparison of 3D IQA Models: Pearson linear corre-
lation coefficient (PLCC) against DMOS on the Phase II dataset.

Algorithm Type JP2K JPEG WN BLUR FF All
Benoit [12] FR 0.784 0.853 0.926 0.535 0.807 0.748

Hewage [15] RR 0.664 0.734 0.891 0.450 0.746 0.558
You [16] FR 0.905 0.830 0.912 0.784 0.915 0.800

Gorley [26] FR 0.372 0.322 0.874 0.934 0.706 0.515
Akhter [17] NR 0.776 0.786 0.722 0.795 0.674 0.568
Our model NR 0.799 0.874 0.928 0.973 0.891 0.875

TABLE V: Break down of performance on symmetrically and
asymmetrically distorted stimuli in the Phase II dataset. Spearman
rank-order correlation coefficient (SROCC) numbers are reported.

Algorithm Type Symmetric Asymmetric
PSNR FR 0.776 0.587

SSIM [2] FR 0.828 0.733
BRISQUE [6] NR 0.849 0.667
NFERM [7] NR 0.773 0.670
Benoit [12] FR 0.860 0.671

You [16] FR 0.914 0.701
Gorley [26] FR 0.383 0.056
Hewage [15] RR 0.656 0.496
Akhter [17] NR 0.420 0.517
Our model NR 0.893 0.840

standards, additive white Gaussian noise, Gaussian blur and a
fast-fading model. Phase I has 20 pristine stereopairs and 365
distorted stereopairs, while Phase II has 8 pristine stereopairs
and 360 distorted stereopairs. Table I-II for Phase I and Table
III-V for Phase II are presented.

Pearson linear correlation coefficient (PLCC) and Spear-
man rank-order correlation coefficient (SROCC) are used to
evaluate performance of our approach. PLCC can be con-
sidered as a measure of prediction accuracy, while SROCC
measures the monotonicity by ignoring the relative distance
between data. The higher SROCC and PLCC values indicate
better performance in terms of correlation with human opinion.

We experimented on the Phase I dataset first to com-
pare the performance of dealing with symmetrically distorted
stereopairs. We compared the performance of our Blind 3D
IQA algorithm with several 2D FR and NR IQA models:
PSNR, SSIM [2], BRISQUE [6], NFERM [7]. For all 2D IQA
algorithms, the predicted quality of a stereopair is taken to be
the average quality predicted from the left and right views.
2D IQA algorithms perform well on this symmetric dataset
as illustrated in previous section. Our method achieves high
performance and performs as well as NFERM as shown in
Table I. We also studied the relevant performance of 3D IQA
algorithms and our algorithm outperforms most of them as
shown in Table II. Although there is little or no binocular
rivalry from the distortions present in the stimuli in Phase I
dataset and there is no prior knowledge to reference images

2224 

  



Partition
Process

Local
Computation

Spatial
Pooling

Local
Computation

Spatial
Pooling

Partition
Process

Weight
Computation

Weighted
Average

3D Quality 
Measure

Left-View
Image

Right-View
Image

Distorted
Stereoscopic

Images

2D Quality
Assessment

Structural Information 

HVS Properties

Naturalness

SVR
Training 

Feature
Extraction

2D Quality
Assessment

Structural Information 

HVS Properties

Naturalness

SVR
Training 

Feature
Extraction

Fig. 3: Diagram of our proposed 3D IQA algorithm. Light-gray portion delivers the distorted stereoscopic images, deep-gray portion
disposes left view, red portion disposes right view, yellow part calculates the weight, light-blue part calculates averaged scores and finally
deep-blue part gets the result.

and distortion types, our algorithm matches those listed FR
algorithms in most aspects.

The Phase II dataset has both symmetrically and asym-
metrically distorted stimuli. Tables III-V show the results
against the mixed dataset. 2D IQA algorithms perform well on
the white-noise dataset as illustrated in previous section. Our
algorithm delivers the best performance compared against most
other algorithms. Besides, we further compare our method
with existing 3D IQA metrics. Among individual distortion
types, our model performes either the best or at parity with
the best for all distortion types. Table V shows the high
performance of our model compared against FR PSNR, SSIM
[2], Benoit [12], You [16], Gorley [26], RR Hewage [15], NR
BRISQUE [6], NFERM [7], and Akhter [17] on the completely
asymmetrically distorted stimuli as we expect.

IV. CONCLUSION

In this paper, we propose a blind 3D image quality assess-
ment algorithm based on free-energy principle. The resulting
algorithm utilizes binocular rivalry based on the brain theory
and properties of HVS and features previously proposed for
2D NR algorithms. Under both symmetrically and asymmetri-
cally distorted conditions, our algorithm outperforms NR IQA
models and delivers competitive performance relative to FR
IQA models on the 3D LIVE Database.
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